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Abstract
The pressure–temperature phase diagram of BaTiO3 has been investigated using
a modification of the standard Landau potential to take account of quantum
saturation of the order parameter at low temperatures. The calculated phase
diagram agrees well with experiment for the cubic–tetragonal and tetragonal–
orthorhombic transitions, but underestimates the orthorhombic–rhombohedral
transition temperature somewhat. The saturation temperature (θS = 160 K) is
sufficiently high that the expected critical point is not observed experimentally.
Instead, each phase boundary bends sharply down,so each of the four crystalline
structures of BaTiO3 has a stability field with increasing pressure at 0 K.

1. Introduction

BaTiO3 undergoes a sequence of ferroelectric phase transitions on cooling, from the cubic
perovskite aristotype structure, through tetragonal, orthorhombic and finally rhombohedral
structures. These phase transitions can be modified by a wide range of secondary variables,
such as chemical doping, electrical and mechanical stress fields, and hydrostatic pressure; see
the reviews by Jona and Shirane (1962) and Lines and Glass (1977). Here we are concerned
with the phase diagram of BaTiO3 as a function of pressure and temperature, with particular
focus on the relative stability of the various phases at low temperature. This work follows
the first experimental study of the low-temperature part of the phase diagram by Ishidate et al
(1997) and the recent first-principles calculations of the BaTiO3 phase diagram by Íñiguez
and Vanderbilt (2002). In this letter, we use a macroscopic Landau potential to describe the
sequence of phase transitions in BaTiO3.

As well as being used as a ferroelectric material, BaTiO3 has played an important role
in the development of our theoretical understanding of ferroelectric phase transitions. An
important landmark in the theory of BaTiO3 was the application of a polynomial-type free
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Figure 1. The pressure versus temperature phase diagram for BaTiO3, based on low-pressure
experiments and classical extrapolation (Samara 1966, 1971, Decker and Zhao 1989).

energy expression (nowadays commonly described as a Landau potential) to describe the
sequence of phases at ambient pressure (Devonshire 1949, 1951). As well as relating the
thermal, structural and dielectric anomalies to each other, this model showed that the various
transitions were described consistently by a single underlying free energy function.

The different phases of BaTiO3 are a system with a degenerate order parameter; a single
order parameter (essentially the displacement of the Ti from the centre of its octahedral
coordination polyhedron) can initially act along one of three perpendicular directions. The
subsequent phase transitions occur as the second and third components of the order parameter
vector are activated.

The initial model of Devonshire was extended by Forsbergh (1954) to include the effects
of two-dimensional and hydrostatic pressures. The effect of a secondary field on the phase
transition is conveniently incorporated into a Landau model, by introducing terms describing
the coupling between the order parameter and the applied field. The precise form of the
couplings is determined by the change in crystal structure at the phase transition, the key
aspects being the point groups of the two structures, and whether there is doubling of the unit
cell at the transition. These factors determine the coupling between the order parameter and
the spontaneous strain (see Stokes and Hatch (1988) for a description of these relationships)
which in turn determines how the free energy is affected by mechanical stress.

The low-pressure part of the phase diagram was measured using dielectric measurements
by Samara (1966, 1971), and was found to be consistent with a classical Landau model of
the type developed by Forsbergh (1954). Extrapolating the phase diagram to higher pressures
was expected to lead to one or two critical points (figure 1). However, when the high-pressure
experiments were performed (Ishidate et al 1997), it was found that the phase diagram did not
have any critical points (figure 2). Instead, each phase boundary became quadratic, rather than
linear, with increasing pressure. This result is characteristic of a phase transition modified by
quantum mechanical effects.
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Figure 2. The pressure versus temperature phase diagram for BaTiO3, showing experimental
data over the entire pressure range (Ishidate et al (1997): �: cubic–tetragonal; •: tetragonal–
orthorhombic; �: orthorhombic–rhombohedral). The solid curves show the phase fields calculated
in the text.

2. The model

The classical Landau potential, �G = (A/2)(T −TC)Q2 +(B/4)Q4 +(C/6)Q6 + · · ·, has been
shown to follow from the general φ4-model in the displacive limit at high temperatures (Salje
et al 1991). Removing the high-temperature constraint leads,for Einstein modes with relatively
flat dispersion of the soft mode, to a more general result, �G = (A/2)(θS coth(θS/T ) −
θS coth(θS/TC))Q2 + (B/4)Q4 + (C/6)Q6 + · · ·, where θS is a saturation temperature, below
which quantum mechanical effects are important. Even more general solutions are discussed
by Salje et al (1991) and Pérez-Mato and Salje (2001). Although this coth(θS/T ) solution is
only strictly correct for certain soft-mode dispersions and hard-mode couplings, it is a good
approximation in the general case. Away from the displacive limit, the free energy expansion
automatically contains a sixth-order term. At least at low pressures, the mechanism of the
transition in BaTiO3 has a significant order–disorder aspect, as evidenced by EPR studies of
the local structure of BaTiO3 at ambient pressure (Müller and Berlinger 1986).

The effect of secondary fields can be added to the quantum mechanical Landau potential
in the same way as for the classical potential. Hayward and Salje (1998) used this method to
model the variation of the transition temperature with variables such as composition, pressure
and uniaxial stress for a range of phase transitions with a single order parameter. Here, we
take this approach to describe the (pressure, temperature) phase diagram of BaTiO3 at high
and low temperatures.

The starting point is the classical Devonshire (1949, 1951) model of BaTiO3 at zero
pressure;
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with A = 4.53 J K−1 mol−1, B = −787.8 J mol−1, B ′ = 945.36 J mol−1, C = 2568.8 J mol−1,
TC = 391 K. By definition, the tetragonal phase has Q1 �= 0, Q2 = Q3 = 0. Similarly,
the orthorhombic phase has Q1 = Q2 �= 0, Q3 = 0 and the rhombohedral phase has
Q1 = Q2 = Q3 �= 0. Equation (1) can therefore be rewritten in three separate forms, to give
the free energy difference between the cubic phase and each of the tetragonal, orthorhombic
and rhombohedral phases.

Each of these expressions is a simple Landau potential, so it is routine to determine the
equilibrium value of Q for each phase, and the associated value of the excess free energy
�G, at any temperature T . The equilibrium phase will of course be the one with the lowest
�G, and phase transitions occur when two of the phases have the same value of �G. For the
cubic–tetragonal transition, the equilibrium transition temperature is found by equating the
excess free energy of the cubic phase (Q = 0 and hence �G = 0) with that of the tetragonal
phase (Q is at the minimum of G(Q)), leading to the standard result,

TT R = TC +
3B2

16AC
. (2)

For the tetragonal–orthorhombic and orthorhombic–rhombohedral transitions, it is necessary
to determine the transition temperature numerically, but the underlying method is the same.

The couplings between the spontaneous strains and the order parameters are of the forms
ei Q2

i and ei(Q2
j + Q2

k), and so the lowest-order coupling terms require pressure dependences
in the Q2

i , Q4
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which simplifies to

�G = A
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To determine the parameters of this classical Landau potential, the zero-pressure results
of Devonshire (1949) were used for A, B , C and TC . The value of λ1 was found by fitting the
gradient of the experimental cubic/tetragonal phase boundary of Ishidate et al (1997) at low
pressures. The parameter λ2 is constrained by the observation that the cubic–tetragonal phase
transition has a tricritical point at pT = 3.5 GPa, T = 233 K (Decker and Zhao 1989), which
implies that the prefactor of Q4

1 in equation (4) is zero when p = pT . The effect of λ3 is to cause
the transition temperatures for the tetragonal–orthorhombic and orthorhombic–rhombohedral
transitions to be more weakly pressure dependent than for the cubic–tetragonal transition.
Given the value of λ1, λ3 was fitted to the gradient of the experimental tetragonal/orthorhombic
phase boundary at low pressures, as measured by Ishidate et al (1997). As noted above, the
tetragonal–orthorhombic transition temperature must be determined numerically, as the tem-
perature where the equilibrium values of Q for the orthorhombic and rhombohedral phases
have equal values of G. Adjusting λ3 changes the variation of the transition temperature with
pressure. In order to reproduce the observed classical behaviour of BaTiO3 as a function of pres-
sure, λ1 = −40 K GPa−1, λ2 = −0.286 GPa−1, λ3 = −0.04 GPa−1. Extrapolated to higher
pressures, these parameters lead to the phase diagram in figure 1, which has a critical point.
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To incorporate low-temperature effects,we modify the prefactor for the term in Q2
i leading,

in the limit of an Einstein-type soft mode, to
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3. Comparison with experiment

Comparing equations (4) and (5), equation (5) has one additional fit parameter, θS. The
saturation parameter, θS = 160 K, was fitted explicitly to the data for the cubic–tetragonal
phase transition, to produce agreement between the calculated cubic–tetragonal transition
temperature and the experiments of Ishidate et al (1997). The same parameter also gives
good agreement for the tetragonal–orthorhombic transition. The experimental orthorhombic–
rhombohedral phase boundary agrees less well with the model.

The model used to describe BaTiO3 in this letter emphasizes the displacive aspects of
the phase transition. In the case of an order–disorder transition, the model of equation (5)
will be modified. One way of visualizing the change is to note that in the high-temperature
limit of Landau-type models, the excess entropy associated with the transition �S ∝ Q2. For
a Bragg–Williams order–disorder process, the configurational excess entropy �S(config) ∝
(1+Q) ln(1+Q)+(1−Q) ln(1−Q). Thus the higher-order terms in the free energy polynomial
are temperature dependent in an order–disorder transition. This change will affect the phase
diagram, but not greatly. For p > 3.5 GPa, the cubic–tetragonal phase transition is second
order, and so the transition temperature only depends on terms in Q2. The temperatures of other
transitions will be affected by changes in the prefactors of Q4 and Q6. However, the values of
Q at the transitions become smaller with increasing pressure, which reduces the contribution of
the high-order terms to the free energy at the high-pressure/low-temperature end of the phase
diagram. Low values of the order parameter are generally favoured at high pressure in BaTiO3,
since the off-centring of the Ti cation leads to a clear increase in the specific volume for the
cubic–tetragonal and tetragonal–orthorhombic transitions (Shriane and Takeda 1952, Kwei
et al 1993). For the orthorhombic–rhombohedral transition, the measured volume anomaly at
the transition is small, and so even determining its sign is not straightforward (Kwei et al 1993).
However, since the orthorhombic–rhombohedral transition temperature falls with increasing
pressure, the Clausius–Clapeyron equation implies that �V (orthorhombic → rhombohedral)
is also positive.

The most significant result seen on comparing the classical (figure 1) and modified
(figure 2) phase diagrams is that classical theory does not predict stability fields for the
tetragonal or orthorhombic phases as a function of pressure near 0 K. By contrast, including the
quantum mechanical modification of Landau theory stabilizes these two phases with respect
to the rhombohedral structure. This is consistent with the experimental data of Ishidate et al
(1997) and the Monte Carlo simulations of Íñiguez and Vanderbilt (2002). The reason that
the critical point is lost is that it lies in the temperature range of the phase diagram where
BaTiO3 is behaving as a quantum paraelectric; the cubic structure is stabilized by zero-point
effects. Similarly, the tetragonal phase is stabilized relative to the orthorhombic phase, which
is stabilized relative to the rhombohedral phase.

We thank J M Pérez-Mato for introducing us to this problem, and for other helpful discussions.
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Jona F and Shirane G 1962 Ferroelectric Crystals (Oxford: Pergamon)
Kwei G H, Lawson A C, Billinge S J L and Cheong S-W 1993 J. Phys. Chem. 97 2368
Lines M E and Glass A M 1977 Principles and Applications of Ferroelectrics and Related Materials (Oxford:

Clarendon)
Müller K A and Berlinger W 1986 Phys. Rev. B 34 6130
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